The Fossil Hominin remains of Sangiran, Java

Evolution, History, Human Evolution, Human Origins, Palaeoanthropology, Palaeontology, Paleoanthropology, Paleontology, Science

Meganthropus palaeojavanicus (from the Ancient Greek, meaning Ancient Java’s Great Human) is a redundant genus and species that was first formally introduced by Gustav vonKoenigswald (1902 – 1982) in 1950. The genus once referred to a set of fossils found on the island of Java in the 1930’s, 1940’s, 1950’s and 1980’s. The Javan fossils are now attributed to the hominin Homo erectus that lived from 1.9 million years ago to 300,000 years ago and had a range from Africa to Eurasia.

vonKoenigswald’s Meganthropus palaeojavanicus

von_Koenigswald
Gustav Heinrich Ralph vonKoenigswald (1902 – 1982)

On the 15th of January 1942, the Director of the Geological Survey of the Netherlands Indies, W. C. B. Koolhoven wrote a letter to anatomist and palaeoanthropologist, Franz Weidenreich informing him that vonKoenigswald wishes the 1939 and 1941 to be attributed to a new genus and species of ape called M. palaeojavanicus. In 1945, Weidenreich referred to it as “vonKoenigswald’s Meganthropus palaeojavanicus”. Held in the Senckenberg Forschungsinstitute und Naturmuseum, an unpublished 1949 scientific paper written by vonKoenigswald proposes that Sangiran 1a,  It was not until 1950, the vonKoenigswald committed his new genus and species to print in a formal introduction. As the sixth decade of the 20th century developed, consensus shifted towards H. erectus as the taxonomic appellation of the Javan fossils.

“Meganthropus” Fossils

The following are a list of fossils that were taxonomically assigned to Meganthropus, but have now been officially assigned to H. erectus

Franz Weidenreich
Franz Weidenreich (1873 – 1948)

Sangiran 6a

Kromopawiro (a team member) discovered the fossil adult mandible fragment “near Glagahombo, north of Sangiran” not far from where another cranium was uncovered in 1939 and south of Sangiran 4’s location. Weidenreich described the 1.6 million year old fossil in 1945, in which he pointed out the size of the mandible and the primitive premolar morphology as evidence to support the application of a new genus and species – M. palaeojavanicus. This conclusion was revised in 1989, when Kramer concluded that the size was within the size range of H. erectus.

Sangiran 7

Dating to between 1.51 and 1.6 million years of age, Sangiran 7 (comprising 54 teeth) was recovered from 1937 to 1941. Fred Grine analysed some of the teeth in 1984, but it would be a decade later before he revised his earlier conclusion that they were hominin. As a result, three teeth FS 67, 72 and 83 were re-attributed to Pongo sp.

Wilfrid Le Gros Clark (1895 – 1971)

Sangiran 8

Uncovered in 1952, Sangiran 8 comprises fragment of mandible, with some teeth roots intact and a complete third molar crown. This individual is interpreted to have died in the jaws of a crocodile, based upon the scare marks on the fossil. The fossil was first described in 1953 by P. Marks concluding it lay outside the size range of H. erectus. In 1955, Le Gros Clark concluded that the fossil was within the range of H. erectus and that has remained the official attribution for Sangiran 8 ever since.

Sangiran 27

This partial adult cranium was first found in 1978 near Sangiran village, north of the River Chemoro and it was found as construction was underway on a new dam. The skull was found in the upper levels of the Sangiran Formation dating to between 1.66 and 1.58 million years of age. The fossil was described by Teuku Jacob in 1980, in which he attributed it to Meganthropus but was taxonomically revised in 2008 for reasons similar to the taxonomic revision of Sangiran 8. Indriati and Anton (2008) also noted that hyper-robust features of the fossil reflects earlier representatives of H. erectus.

Modern Uses of Meganthropus

Though taxonomically and scientifically redundant, Meganthropus is used by pseudoscientific Creationists as evidence for the Nephilim, giants that lived before Noah’s flood, referenced from an Iron Age manuscript called the “Book of Enoch”.

Norandino and Lucina Discovered by the Ogre (1624) – Giovanni Lanfranco (1582 – 1647)

A trickle of scientific papers and posters have been published and presented over the decades, claiming evidence for Meganthropus. Authors have suggest that Sangiran 5 is evidence of the existence of an older, “more robust morph”, with pongo-like characteristics. Suggesting that a Gigantopithecus-like counterpart lived in island South-East Asia. The most recent appearance of support for Meganthropus was at the 83rd annual meeting of the American Association of Physical Anthropologists in 2014, a team of scientists led by Clement Zanolli presented a poster on their analysis of a fossil mandible fragment code named Arjuna 9. They suggested that teeth had enamel thickness and dental tissue proportions that differed from those seen in H. erectus. The statistical analysis of the enamel-dentine junction also seemed to support an attribution to Pongo sp. The fact remains, no evidence exists to support classifying the Javan fossils as Meganthropus.

The Hominin of Lake Megachad

Human Evolution, Human Origins, Palaeoanthropology, Palaeobiology, Palaeoecology, Palaeontology, Paleoanthropology, Paleobiology, Paleoecology, Paleontology
africa-11117

On the 23rd of January 1995, a team of palaeontologists discovered a fragment of fossil jaw lying on the gravel desert of northern Chad. The fossil could not be accurately dated, nevertheless stratigraphic layers nearby suggested it could be around 3.5 million years of age. Back then, the site of Koro Toro was on the edge of a 3 million square kilometre Lake called Megachad. The fossil, now codenamed KT 12/H1 consisted of the front portion of the jaw with a number of teeth still in place. By using Isotopic analysis the diet of the hominin shortly before it died, can be determined. The fossil showed a preference for C4 plants, including sedges and grasses, suggesting that the area around Koro Toro was predominantly grassland. Comparing the fossil to other hominins, the features were considered very different compared to Australopithecus afarensis, 2,500 km away in Ethiopia and Kenya. The French team, led by Michel Brunet, concluded the fossil was part of a new species of AustralopithecusAustralopithecus bahrelghazali. This caused a bit of a stir in the palaeoanthropological community, but progressively began to die down. The lack of fossil finds in Chad thereafter contributed to the rate at which the palaeoanthropological community forgot about the fossil, that was, until 2001. Given the same variety of animals can be found in both Ethiopia and Chad, it is not a stretch to imagine australopithecines travelling between the two regions three million years ago and many palaeoanthropologists now consider the fossil, a variant of Australopithecus afarensis.

download
KT12/H1 the holotype of Australopithecus bahrelghazali

How did the fossil make palaeoanthropologists rethink their understanding human evolution? “Abel” as the fossil became to be known reminded palaeoanthropologists that human evolution could have been more complex than previously accepted. Though once you considered the features of an Australopithecus afarensis jaw and compare that to “Abel”, it is acceptable to attach it to the Ethiopian hominin. The differences are subtle. It is worth reminding here however that the use of species names don’t tell us much about the hominins palaeobiology, are primarily to put, order to our understanding of evolution and are a useful means of scientific communication. Palaeoanthropology has had a long history of naming new species, when later we realize we were too optimistic. In the sense, that we forget how useless this venture is. More is learned from the fossils, about a hominins diet, locomotion patterns and physical characteristics than what species it belongs too. Thankfully, science is less focused on this and we are now learning much more about the hominin and the ecosystem it was once a part of. The second way in which “Abel” got us thinking, was via the surprise geographic location. Up until that time, any fossil finds made on the continent of Africa were made exclusively in eastern and southern Africa. “Abel”, reminded us that hominins were not just restricted to those regions and likely could be found all over Africa. Exciting though this prospect was, it could not solve the problem of preservation in areas where fossils cannot survive, in the hostile environments of the Sahel.

donkey-534906
A Gravel Desert in Tunsia

Dawn and Demise of Meganthropus palaeojavanicus

Human Evolution, Human Origins, Palaeoanthropology, Paleoanthropology, Taxonomy

The History of Palaeoanthropology is dominated by an obsession of applying new latin genus and species names to nearly every fossil that made its way into scientific scrutiny. With the passing of the 20th century, this obsession dissipated as scientists began to realise such preoccupations were redirecting some much needed attention away from many important relevant questions. Today’s Eventlog reminds us of what had been. But first let me introduce three gentlemen.

W. C. B. Koolhoven was a Dutch Director of the Geological Survey of the Netherlands Indies. Franz Weidenreich (1873-1948) was a german anatomist and palaeoanthropologist, based for much of his life in Beijing, China and had a long association with the Homo erectus fossils of Zhoukoudian, China. Finally, let me introduce Gustav Heinrich Ralph von Koenigswald (1902-1982) a german palaeontologist, geologist and Palaeoanthropologist. Interested in geology and fossils from a young age, Gustav vonKoenigswald worked in Java propecting for hominin fossils. The Dutchman and two germans crossed paths in discussions about two Javan fossil mandibles. The debate centred around the size of the mandibles, which at that time seemed too big to be attributed to Homo erectus.

And so on this day the 15th of January 1942, Koolhoven wrote a letter to Weidenreich letting him know that vonKoenigswald was keen to attribute Sangiran 5 and 6a to Meganthropus palaeojavanicus. It would be eight years before vonKoenigswald would introduce the new genus and species formally. Over the next few decades, M. palaeojavanicus began its slow dissolution from scientific discourse, replaced by the hominin Homo erectus.

Discovery of the Paranthropus of Peninj

Geology, Human Evolution, Human Origins, Palaeoanthropology, Paleoanthropology, Radiometric Dating

This evening on the 11th of January 1964, fossil hunter Kamoya Kimeu (1940-Present) was crossing what had been an Early Pleistocene delta to the western side of Lake Natron, Arusha, Tanzania. He was there with a team led by Richard Leakey in search of our earliest ancestors. Barely a few days into the expedition, Kimeu found a hominin mandible, not one of our ancestors, but just an intriguing. It is 1964 and by this time, OH 5, representative of Paranthropus boisei was already gracing the covers of magazines throughout the world. Thought to be the first human that used stone tools for the first time, the Nutcracker Man was not all he was cracked up to be. As more hominin fossils from the Late Pliocene and early Pleistocene began to show, it became more and more clear, that while P. boisei may have been found on an archaeological layer, this is not enough evidence to support a “he’s the first human” hypothesis.

Lengai_from_Natron

Ol Doinyo Lengai: A View from Lake Natron

Kimeu had found another representative of P. boisei at Peninj and it was a remarkably complete hominin mandible. The right condyle was missing and so too were the left and right coronoid processes, despite that the fossil had its complete set of teeth and that was particularly key. The teeth showed a great deal of wear  to the point that you could see the dentine beneath the enamel. This individual must have eaten alot of sedges and grasses throughout its life to give that sort of result. Grasses and sedges that you could find around deltas like that one that would have entered Lake Natron, when it wasn’t quite as salty. But when exactly did our hominin friend give up its spirit along the shores of the Lake. The stratigraphic layers in the region are like the pages of a picture book, no words, but pictures that can tell better narratives that Twilight could ever even dream of. The mandible was uncovered in a sedimentary layers, comprising the deltas alluvial deposits, sandwiched between two volcanic layers. The volcanic Tuff atop the layer that contained the fossil was previously dated to between 1.6 and 1.4 million years of age, while the basalt below was dated to 1.7 million years of age. You may think that the fossil is probably going to be between 1.7 and 1.4 million years of age, but the team of geologists at the site conducted further analysis at the site to help get a more accurate result. They settled on an age for the mandible of between 1.5 and 1.3 million years of age. Enough time for the ph of a lake to reach beyond 12.

Peninj

View of Lake Natron and a superimposed graphic of the hypothetical organisation of the layers around the fossil.

Since the discovery of the Peninj 1 mandible in 1964, another hominin with similar characteristics to P. boisei was found. Paranthropus aethiopicus now joined a trio of hominin species that became the Paranthropines, comprising boisei, robustus (South African hominin) and aethiopicus. Most of what we have collected of these creatures are crania and mandibles, though some postcranial remains have been found. Thankfully the teeth survive well and can tell us a great deal about their diet and the subtle, yet important questions of how they chew their greenery. There was a long drawn out debate over whether these three hominins deserved to live in a separate group – the Paranthropines. Originally, these hominins were classified as robust australopithecines and the palaeoanthropological community decided that a change was needed. The complete anatomy of the Peninj Hominin was never recovered and given that the mandible survived so well, this individual may have fallen to a carnivore in the delta. Below is a summary of the discovery that was made on the 11th of January 1964.

Gorjanović-Kramberger Hypothesis: Took 99 Years, But We Finally Tested It

Anatomy, Human Evolution, Palaeoanthropology, Palaeobiology, Paleoanthropology, Paleobiology, Science, Statistics

You meet Homo neanderthalensis in a dark alley……………….What do you do?

Homo neanderthalensis is one of the best understood species of hominin today. One that lasted many hundreds of thousands of years throughout Europe. Despite what we know through the lens of science, there is still much that we want to know about this species of human. Interrogating the subtle pieces of evidence is the task of palaeoanthropologists, archaeologists, palaeoenvironmental scientists throughout the world. Contrary to what you may see on your average human evolution documentary, the kind of research conducted can be much more subtle. Here I will draw your attention to a difficult question. If we could fill the Great Hall of the South Kensington Museum with a few hundred individuals of our extinct cousin, what differences would we see in the upper chest and neck. The answer to that, at the beginning of 2015: We are not happy that we really know enough to give an answer.

Range_of_Homo_neanderthalensis
Range of Homo neanderthalensis

H. neanderthalensis is a well represented species of human in the fossil record, but the post-cranial anatomy is less well accounted for than the skulls. Not ideal for an investigation into the chest and abdominal regions of the human body. Nevertheless, it is vital we exhaustively examine what we have, to reveal potential clues to the kind of morphology these populations once exhibited. To that end, ten palaeobiologists from various Spanish academic institutions presented evidence that may be useful here. The mechanics of the breathing system, constrained by the rib cage and not the evolution of the species, is the focus here. Research continues to be a work in progress, new technologies arrive and they help further our understanding of the past. This research is no exception. Two year into the new millennium a new form of analysis that gauged quantity within a structure was applied to a collection of isolated ribs from an individual codenamed Shanidar 3. This individual had a more splayed lower rib cage compared to the more barrel-like form of our lower rib cage. Thus started a series of papers that suggested the lower rib cage of Homo neanderthalensis was generally less like ours. Comparatively less investigative research has been given to the upper end of the rib cage. This latest academic paper sets out to help understand just that.

Title and Authors of the Paper in Question
Title and Authors of the Paper in Question
640px-Krapina_-_Dragutin_Gorjanovic_Kramberger
Dragutin Gorjanović-Kramberger (1856 – 1936)

In 1906 and a time when ancient humans were Anti or Post Diluvian Era (Noah’s Great Flood), Dragutin Gorjanović-Kramberger suggested that the superior ribs are an important facet of an upper thoracic orchestra of components, that together control upper thoracic breathing, separate from diaphragmatic breathing. It was not until 2015 that this hypothesis was put to the test on six hominin first-ribs from the cave site of El Sidrón, Asturias, northern Spain. The six first-rib fragments may represent, at most, four individuals. The first step was to identify the bone fragments and place them in their correct anatomical position. Below is a re-organisation of the information given about the sample itself. The first-rib of Kebara 2 was found to be similar in shape space and form space (both terms used in a statistical analysis of shape, known as Procrustes Least Squares (PLS)) to SD-1767 and SD-1699, indeed H. neanderthalensis exhibits straighter first-ribs than modern day Homo sapiens. What could this mean? The scalene muscles are the ones that give your neck, its shape. They run from the Rib 1 and Rib 2 up the side of your neck attaching to the vertebrae. Alteration in shape of the first ribs, and the attached muscles will have to operate differently, but may help explain the differences we see between H. sapiens and H. neanderthalensis. The principle component analysis (PCA) reveals some overlap in the linearity of the rib shaft. Such results are reflected in analysis of the specimens of Krapina Cave, Croatia and ATD6-108 representing Homo antecessor, from Gran Dolina Cave, Atapuerca, Spain. So, the straightness of the first-ribs may affect the movement of the upper torso during breathing.

Juvenile 1: SD-2148 (Right) and SD-2172 (Left)

Juvenile 2: SD-417 (Left) and SD-1225 (Right)

Large Adolescent / Small Adult: SD-1767 (Left)

Large Adult: SD-1699 (Right)

Looking at the juveniles, it is important to understand costal cartilage development. Understanding adult H. neanderthalensis individuals is easier, as there are more post-cranial fossils, but the El Sidrón hominins will be useful in understanding the ontogeny of costal cartilage in future fossil ribs of  juveniles. The El Sidrón juveniles confirm a tighter upper chest for H. neanderthalensis. The first-ribs are smaller, but feature larger attachments at the rib heads, whereas the lower ribs have smaller attachment points. Therefore, a H. neanderthalensis individual, exhibited a smaller upper torso, which was further from the cranium thanks to the slightly longer neck vertebrae. First-ribs that are straighter would have to project out from the skeleton more and Gorjanović-Kramberger proposed that the rest of the rib-cage would project outward, just as much. The scientific team added to this, that a change in the first ribs would in turn affect the rest of the rib-cage, because the ribs are latched together with intercostal muscle, preventing individual ribs from varying in shape, that ultimately allows coordination of muscle, chest wall and breathing action. Upper ribs connect directly with the sternum and so, result in distinctive rib shape compared with the lower thorax.

Association of Intercostal Muscle and Rib Bone
Association of Intercostal Muscle and Rib Bone

To summarise, the first ribs appear to determine the shape of the upper thorax ribs, but straightness of the first rib is linked with the straightness of the upper ribs. Together, this suggests the existence of different rib shape and functions between the upper and lower thorax. When you look at a particular fossil specimen, it is important you are aware of what bones, muscles, cartilage was associated with it. They all interact in subtle ways which we are piecing together in hominins, with the variety in body forms available going back 7 million years. In examination of the monophyly of Paranthropus, cladistical statistics showed us that the skeletal points used, should not be linked with eachother. An example of that, would be the masticatory system in Paranthropus comprising numerous points, all interacting with one another. This is a shame because the crania and mandibles are predominantly all we have of that genus. Currently, most are happy that Paranthropus boisei, Paranthropus aethiopicus and Paranthropus robustus are part of the same family – they are monophyletic. The rib cage, is similar to the masticatory system but it is a single unit with two functions, one  is upper thoracic respiration and the other is diaphragmatic respiration. H. neanderthalensis evolved a more restrictive respiratory system and highly developed arm muscles, evolutionarily more important for the condition in which it lived. So, if you were to meet our ancient ancestor in a dark alley, what should you do? It would have been prone to breathlessness, but could rearrange your face easier. Moral of the story, RUN!

The costal remains of the El Sidrón Neanderthal site (Asturias, northern Spain) and their importance for understanding Neanderthal thorax morphology

Homo floresiensis: extracting ancient DNA: It’s been 8 years, any success?

Archaeogenetics, Archaeology, Archeogenetics, Archeology, Genetics, Palaeoanthropology, Paleoanthropology

I recently came across this scientific article in the Journal of Human Evolution entitled, Ancient DNA Analysis of Dental Calculus by Weyrich et al. It reminded me of the research conducted on the Indonesian hominin, Homo floresiensis. So, here I summarise what we know thus far. Dating to between 95,000 and 17,000 years ago, the hominin was found in the cave of Liang Bua, overlooking the Wae Racang river valley, on the island of Flores. It’s most remarkable feature was the 1.06 m stature of the individual found. Begging the question, how is this hominin related to us and what led to its diminutive stature. Much of the debate was thoroughly summarised in Leslie Aiello’s paper entitled, Five Years of Homo floresiensis, back in 2010. In short, some questioned the validity of naming these individuals a new species of human. Evidence was brought forward to support the hypothesis that these people were suffering from the neurodevelopmental disorder, Microcephaly and other diseases that induce a reduced stature. As time has passed, media sensation abated and researchers had a chance to step back, the majority are now more accepting of the Australian-Indonesian team’s decision to apply the new hominin nomenclature. Much of the debate hinges on skeletal comparisons between Homo floresiensis and other hominins, like us. There is one piece of information that the individuals of Liang Bua have yet to reveal – Deoxyribonucleic Acid.

Kilimutu Crater Lakes, Flores, Indonesia
Kilimutu Crater Lakes, Flores, Indonesia

Two teams of scientists, the Australian Centre for Ancient DNA (ACAD) and the Department of Evolutionary Anthropology at the Max Planck Institute (MPI) attempted and failed to extract DNA from the individual’s teeth in 2006. This was due to the environment in which the hominins were found, which was not conducive to DNA preservation. Christina Adler of ACAD hypothesised that the reason for extraction failure could be due to extraction procedure. In 2007 the ACAD team sucessfully extracted DNA from a pig tooth unearthed at the Liang Bua Cave, which was about 6,000 years old. The team suggested that first, Cementum (calcified root covering) is the richest source of DNA and second, drilling the specimen destroys the very molecule they are after. Armed with this knowledge another attempt to extract DNA from the hominins of Liang Bua is still yet to be carried out. The year 2013, saw the successful extraction of 400,000 year old DNA in Spain, so Floresiensian DNA may still lie within the teeth. I’m hoping, despite the less than ideal high temperatures of the cave sediments, there lies within those hominin individuals such strands of the good stuff.

Cranium and mandible cast of Homo floresiensis individual, LB1
Cranium and mandible cast of Homo floresiensis individual, LB1

Returning to the paper I mentioned at the beginning, it is a summary of all we know regarding the extraction of aDNA and steps to take when extracting it from calculus on teeth. Calculus is a hardened group of micro-organisms that appear as a yellow build-up usually around the gum-tooth boundary. The first demonstration of aDNA in Calculus was documented in a paper entitled Ancient Bacterial DNA (aDNA) in dental calculus from archaeological human remains by Preus et al., in 2011. A year later, aDNA was extracted from Neolithic Argentinian and Chilean humans. In that study, five bacterial species gene sequences were amplified by targeted polymerase chain reactions (PCR). By 2014, Warinner et al., used the power of the metagenomic sequencing strategy demonstrated increased resolution, the identification of antibiotic resistence genes and though the specimens were put through an Ethylenediaminetetraacetic acid (EDTA) and bleach treatments, DNA was recoverable.

Deoxyribonucleic Acid (DNA)
Deoxyribonucleic Acid (DNA)

When analysing hominin diets, microfossils are a large component, but the strides being made in aDNA extraction will mean that the species of plant or animal will be identified or as it usually does, throws up more questions than answers.

17 Palaeoanthropological Terms in Irish

Archaeology, Archeology, Evolution, Human Origins, Palaeoanthropology, Palaeontology, Paleoanthropology, Paleontology
Model: Shep – The Border Collie (12 years old)
Location: Carrowkeel, Co. Sligo
Taken: 26th of May 2018

Here are just some of the words, that you are likely to use in discussion of human evolutionary research. For more information regarding how to pronounce the words check out the video below.

Gaeilge To English

Pailéantraipeolaíocht – Palaeoanthropology

Anailís Lithic – Lithic Analysis

Seandálaíocht – Archaeology

Astrálaipiticín – Australopithecine

Scaipeadh – Dispersal

Bhreismheascadh – Admixture

Antrapóideach – Anthropoid

Pléisticéineach – Pleistocene

Geomoirfeolaíocht – Geomorphology

Bunús Daonna – Human Origins

Daoine anatamaíoch Nua-aimseartha – Anatomically Modern
Human

Ilchríoch – Continent

An Afraic – Africa

An Eoráise – Eurasia

Anailís Timpeallachta – Environmental Analysis

Dátú Argón-Argón – Argon/Argon Dating

Anailís Ghéiniteach – Genetic Analysis


17 Palaeoanthropological Terms in Irish / 17 Téarmaí Pailéantraipeolaíochta as Gaeilge

The Rise of the Terrible Beasts – Deinotheria

Continental Drift, Palaeoanthropology, Palaeozoology, Paleoanthropology, Volcanology, Zoology

Deinotherium. The Terrible Beast. A Proboscidean. The video below was one of my first introductions to the world of palaeoanthropology and 3D reconstructions of prehistoric life. It inspired me to learn more about the remote prehistory. This creature, a relative of the famed African Elephant, would have been between 4.5 to 5 metres in height at the shoulder, with a set of short downward-facing tusks and would have had a similar behavioural characteristics to modern day elephants. Nobody knows how long the trunk was, though the muscle attachments regions on the front of the skull can give some clues, its length remains conjectural. The set of downward-facing tusks have been the subject of much debate, ranging from sexual display to digging for roots and tubers to tree bark scraping. Again explanations vary. The Deinotheres has, thus far, been broken up into three species – D. giganteum, D. bozasi and D. indicum. The earliest examples of this group have been dated to about 23 million years ago (Early Miocene), while their extinction took place some time in the Middle Pleistocene, about 700,000 years ago. This was probably caused by the knock-on effects of climate change on the habitats in which they lived. The Deinotheres have a history that extends back into the Oligocene Epoch and this will be the subject of this discussion. As a side note, it is really sad that documentaries on human evolution and prehistoric beasts, do not explain the following. This is documentary material, in my opinion.

Deinotherium12
Deinotherium: A Reconstruction of the “Terrible Beast”

As Gondwana began to rupture apart 184 million years ago in the Early Jurassic. Africa was the first isolated baby continent of Gonwana. It remained as such, quite literally up until about 25 million years ago, 159 million years of isolaton for evolution to work its magic on a limited diversity of placental mammals that called Africa, home. But given that elephant-like creatures existed in Late Oligocene (34 – 28 Million Year ago) Pakistan, land bridges must have developed between Africa and Arabia / Eurasia as the continent made the relentless push north. With such unimaginable tectonic forces at work, it is inevitable that volcanism increases in activity. The tectonic dynamics were such in eastern Africa million of years ago that a unique type of volcanic eruption occurred. Everybody is familiar with the power of water, in the form of slow development floods and the devastating flash-flood. Lava is equally capable of flooding the landscape, not as we all know it today, but on a scale that we cannot comprehend. Everybody is familiar with the Cretaceous – Paleogene Extinction Event, but few are aware of the most devastating mass extinction event in the prehistory of the planet – The Permian – Triassic Extinction Event. It was brought on by a truly massive flood basalt eruption. This is what quite literally created Siberia, that’s right Siberia. Today, 252 million years on, the remains of that basalt eruption covers an area of over 2 million sq km² and may, back then, have covered over 7 million sq km². Eleven flood basalt eruption events have taken place within the last 250 million years. The Eritrean Intertrappean Beds is a much smaller events and featured episodes of volcanic activity followed by laying down of fluvial sediment, hence the “Inter-Trappean”. These beds can be up to 100 metres in depth and cover many square kilometres. This intermittent event has been dated from 29 to 23.6 million years of age.

800px-Blakey_35moll
Our Planet: The Oligocene Epoch (34 to 23 Million Year Ago)

Mendefera, is the town capital of the Debub Region of Eritrea and it sits atop the Eritrean Intertrappean Beds. It was at a number of outcrops of fluvial mudstones and siltstones that fossils of the early ancestors of Deinotherium were uncovered recently, called Prodeinotherium. Numerous other sites have revealed early Proboscideans such as Gomphotherium, which is likely to be the earliest representative of this intriguing family. During the Oligocene, Arabia and north-eastern Africa flirted with the Tethys Ocean promiscuously. So the sight you might have seen from the Eritean highlands, back then was swamp, river and lake populated landscapes, perfect for tropical wet forests, especially when the basaltic volcanism of the area was on hiatus. As Africa edged closer to Arabia and Eurasia, the lack of diverse fauna, may have allowed a large influx of Eurasian fauna to call Africa, home for the first time. There are an estimated six Trans-Tethyan Paleogene mammalian dispersals all of which were limited by the availability of land bridges. So large herbivores could not cross into or out of Africa without substantial land bridge crossing points. By the beginning of the Miocene, there was a massive faunal turnover in the form of African endemic species dying out and the movement of Eurasia fauna south into the continent. This dynamic change in faunal movements also included the northward movement of Prodeinotherium into Eurasia, evolving into the Deinotherium we all know and love.

Mendefera: Site of the ancestral Deinotherium Fossils
Mendefera: Site of the ancestral Deinotherium Fossils

Prehistoric beasts under attack

Cancer: The Earliest Carcinoma Yet Discovered

Archaeology, Archeology, Cancer, Human Evolution, Palaeoanthropology, Palaeopathology, Paleoanthropology, Paleopathology

You are looking at the rise of metastatic carcinoma in human body cells. A form of cancer with the ability to infect other organs in a biological organism. While Leprosy is the oldest documented disease in the world, thus far, dating to 4000 B.C. India. Ignoring the debate regarding the true age of knowledge in the Edwin Smith Papyrus (While it dates to 1600 B.C, the knowledge it contains may be as much as 1400 years older), evidence for Cancer may date back to northern Sudan 3,200 years ago.

Image

 Skeleton 244-8 was recovered from tomb G244 in the Amara West C cemetery in 2013. This 25 to 35 year old man was found with a considerable coverage of pin-sized perforations from shoulder to proximal femor. The bone tissue was therefore attacked by something. Historically Metastatic organ cancers are the most likely candidate as they prefer bone tissue. Tumor cells spread through haematopoietic-rich bone marrow creating holes as a result of bone reabsorption in a process known as osteolysis.

Image

 This research is helping us better understand the evolution of cancer and is a useful glance-back to remind us that animals and plants are not the only organisms that evolve, disease causing bacteria have evolved with us (animals, plants etc.) for hundreds of millions of years.

What about insects in hominin diets?

Archaeology, Archeology, Diet, DNA, Human Evolution, Insects, Journal of Human Evolution, Lithics, Palaeoanthropology, Paleoanthropology, Research
Image

For those fans of human evolutionary research news, you will be well aware of the lack of research into the role insects played in the diet of hominins over the past 6 or so million years.

This topic was addressed back in 2001 in the chapter of an academic volume by William McGrew of the department of Archaeology and Anthropology, University of Cambridge. Since then nothing has been done to address ways in which such an investigation could be conducted. What can be done to address this? Look at what we………..modern primate diets and the role insects play in their diets from the human to the Orang-utan. Let’s then look at the earliest evidence for hominin consumption of insects. South Africa has nabbed that prize, thus far. The Lower Palaeolithic sites of Swartkrans, Sterkfontein and Drimolen contained hominin fossil bone tools with wear patterns similar to those wear patterns you find on sticks used by Chimps to fish for termites. Fossil remains of Paranthropus robustus were found at these sites and the evidence suggests they were feasting on termites.

Image
Paranthropus boisei (Extinct cousin of Paranthropus robustus)

Examining the fossil evidence is one focus, but there are others including, lithics, residues, dental microwear, stable isotopes, DNA and coprolites (Fossilised shit…..basically). The dental microwear is quite problematic, because you have to take note that the tooth has been in the earth for millions of years (2.4 million years for the earliest Paranthropus specimen). Stable isotopic research is the much more promising of the topics discussed in William McGrew’s latest paper for the Journal of Human Evolution.