Palaeoanthropologist Alan Cyril Walker (1938 – 2017)

CaptureAlan Cyril Walker (born August 23, 1938) died on November 20, 2017, of pancreatic cancer. He was a world-renowned paleoanthropologist and the recipient of numerous awards for his extraordinary scientific achievements, including a “genius” award from the John D. and Catherine T. MacArthur Foundation, and lifetime awards such as the Charles R. Darwin Lifetime Achievement Award from the American Association of Physical Anthropologists and the Leighton Wilkie prize of the Center for Research into the Anthropological Foundations of Technology (CRAFT) and the Stone Age Institute, Indiana University, and the International Fondation Fyssen Prize in Paris. He was one of the only scholars in the world elected to the Royal Academy (U.K.) as well as the United States National Academy of Sciences and the American Academy of Arts and Sciences.

Dr. Walker was born in Leicester, England, the second of four sons of Cyril Walker, a carpenter, and Edith Tidd Walker, a housewife. He was preceded in death by his parents, his first wife Patricia Nicholson, and a younger brother, Gerald Walker. He is survived and mourned by his elder brother, J. Trevor Walker and his younger brother Michael D. Walker, both of whom livie in England, his loving second wife of 42 years, anthropologist and author Pat Shipman, of Moncure, N.C. , his son Simon B. Walker, and his son’s wife Shellene Wellnitz Walker, and his granddaughters Bryn and Meghan Walker of Morrisville, N. C. In addition, he is remembered fondly by many of his former students and colleagues in several countries.

Alan Walker earned an undergraduate degree with honors in the Natural Sciences (Geology, Zoology, Mineralogy, Petrology, and Palaeontology). Following his childhood fascination with animals and fossils, Walker obtained a grant to attend the University of London, earning a Ph.D. in Anatomy and Palaeontology under the mentorship of John Napier. His thesis topic was a study of the functional anatomy and behavior of living and fossil lemurs of Madagascar. His work had a major influence on the field, emphasizing deducing the behaviors of extinct species from living ones to paleontology. He later received an honorary D.Sc. from the University of Chicago.

For much of his career, Dr. Walker was a brilliant teacher of human gross anatomy, training thousands of future physicians. Institutions where he worked included the Royal Free Hospital, School of Medicine, London (19165), Makerere University College, Kampala, Uganda (1965-1969), the University of Nairobi Medical School, Kenya (1969-1974), Harvard Medical School (1973-1978), and The Johns Hopkins University School of Medicine (1978-1995). In 1995 he moved to The Pennsylvania State University to teach anatomy and biology to undergraduate and graduate students, retiring in 2010 as an Evan Pugh Professor of Anthropology & Biology.
Throughout his academic career, Alan Walker was known for his kindness and generosity to students, for the tremendous breadth of his interests and knowledge, and for pioneering new approaches to evolutionary problems. He was instrumental in developing the field of dental microwear to deduce diets of extinct species and was among the first to the study of the structure of the inner ear of fossils to understand their patterns of locomotion and movement of extinct animals.
He was also known for his collaborations in finding fossils with Richard and Meave Leakey in Kenya. One of their most important discoveries was the finding, excavation, and analysis of the most complete ever skeleton of Homo erectus from Nariokotome, Kenya. This skeleton revealed the startlingly tall and lanky stature of a youngster of the species that first migrated out of the African continent. His research also had a major impact on the study of fossil apes, following his discovery of thousands of bones of several extinct apelike creatures on Rusinga and Mfwangano Islands in Lake Victoria, Kenya.

In accordance with his wishes, there will be no funeral or memorial services. Condolences may be sent to his wife, Dr. Pat Shipman, at 3140 Chatham Church Road., Moncure NC 27559 or ( In lieu of flowers, friends and family in the U.S. may send donations to St John’s College, Cambridge, at or, in the U.K., to


Middle Pleistocene Homo naledi

John Hawks discusses the latest news on the Rising Star Project:

Africa’s richest fossil hominin site has revealed more of its treasure. It’s been a year and a half since scientists announced that a new hominin species, which they called Homo naledi, had been discovered in the Rising Star Cave outside Johannesburg.

Now they say they have established and published the age of the original naledi fossils that garnered global headlines in 2015. Homo naledi lived sometime between 335 and 236 thousand years ago, making it relatively young.

They’ve also announced the discovery of a second chamber in the Rising Star cave system, which contained additional Homo naledi specimens. These include a child and the partial skeleton of an adult male with a well-preserved skull. They have named the skeleton “Neo” – a Sesotho word meaning “a gift”.

The Conversation Africa’s Science Editor Natasha Joseph asked Professor John Hawks, a member of the team, to explain the story behind these finds.

To an ordinary person, 236 000 years is a very long time ago. Why does the team suggest that in fact, Homo naledi is a “young” species?

The course of human evolution has taken the last seven million years since our ancestors diverged from those of chimpanzees and bonobos. The first two-thirds of that long history, called australopiths, were apelike creatures who developed the trick of walking upright on two legs.

Around two million years ago some varieties of hominins took the first real steps in a human direction. They’re the earliest clear members of our genus, Homo, and belong to species like Homo habilis, Homo erectus and Homo rudolfensis.

Homo naledi looks in many ways like these first members of Homo. It’s even more primitive than these species in many ways, and has a smaller brain than any of them. People outside our team who have studied the fossils mostly thought they should be around the same age. A few had the radical idea that H. naledi might have lived more recently, maybe around 900,000 years ago.

Nobody thought that these fossils could actually have come from the same recent time interval when modern humans were evolving, a mere 236 to 335 thousand years ago.

How do you figure out a fossil’s age?

We applied six different methods. The most valuable of these were electron spin resonance (ESR) dating, and uranium-thorium (U-Th) dating. ESR relies on the fact that teeth contain tiny crystals, and the electron energy in these crystals is affected by natural radiation in the ground over long periods of time after fossils are buried.

U-Th relies on the fact that water drips into caves and forms layers of calcite, which contain traces of uranium. The radioactive fraction of uranium decays into thorium slowly over time. So the proportion of thorium compared to uranium gives an estimate of the time since the calcite layers formed. One of these calcite deposits, called a flowstone, formed above the H. naledi fossils in the Dinaledi Chamber. That flowstone helps to establish the minimum age: the fossils must be older than the flowstone above them.

For these two methods, our team engaged two separate labs and asked them to process and analyse samples without talking to each other. Their processes produced the same results. This gives us great confidence that the results are reliable.

What does the discovery of Homo naledi’s age mean for our understanding of human history and evolution?

For at least the past 100 years, anthropologists have assumed that most of the evolution of Homo was a story of progress: brains got bigger over time, technology became more sophisticated and teeth got smaller as people relied more upon cleverness to get better food and prepare it by cooking.

We thought that once culture really got started, our evolution was driven by a feedback loop – better food allowed bigger brains, more clever adaptations, more sophisticated communication. That enabled better technology, which yielded more food, and so on like a snowball rolling downhill.

No other hominin species could compete with this human juggernaut. You would never see more than one form of human in a single part of the world, because the competition would be too intense. Other forms, like Neanderthals, existed within regions of the world apart from the mainstream leading to modern humans in Africa. But even they were basically human with large brains.

That thinking was wrong.

Africa south of the equator is the core of human evolutionary history. That’s where today’s human populations were most genetically diverse, and that diversity is just a small part of what once existed there. Different lineages of archaic humans once lived in this region. Anthropologists have found a few fossil remnants of these archaic populations. They’ve tried to connect those remnants in a straight line. But the genetic evidence suggests that they were much more complex, with deep divisions that occasionally intertwined.

H. naledi shows a lineage that existed for probably more than a million years, maybe two million years, from the time it branched from our family tree up to the last 300,000 years. During all this time, it lived in Africa with archaic lineages of humans, with the ancestors of modern humans, maybe with early modern humans themselves. It’s strikingly different from any of these other human forms, so primitive in many aspects. It represents a lost hominin community within which our species evolved.

I think we have to reexamine much of what we thought we knew about our shared evolutionary past in Africa. We know a lot of information from a few very tiny geographic areas. But the largest parts of the continent are unknown – they have no fossil record at all.

Explorers Mathabela Tsikoane, Maropeng Ramalepa, Dirk van Rooyen, Steven Tucker (seated), and Rick Hunter (seated) inside the Rising Star cave system. Wits University/Marina Elliott

We’re working to change that, and as our team and others make new discoveries, I’m pretty sure we are going to find more lineages that have been hidden to us. H. naledi will not be the last.

The first Homo naledi discoveries were made in the Dinaledi Chamber. What led researchers to the second chamber? And what did you find there?

The Dinaledi Chamber is one of the most significant fossil finds in history. After excavating only a very tiny part of this chamber, the sample of hominin specimens is already larger than any other single assemblage in Africa.

The explorers who first found these bones, Rick Hunter and Steven Tucker, saw what the team was doing when they were excavating in the chamber. The pair realised that they might have seen a similar occurrence in another part of the cave system. The Rising Star system has more than two kilometres of mapped passages underground. In another deep chamber, accessed again through very tight underground squeezes, there were hominin bones exposed on the surface.

Our team first began systematic survey of this chamber, which we named the Lesedi Chamber, in 2014. For two years Marina Elliott led excavations, joined at times by most of the team’s other experienced underground excavators. They were working in a situation where bones are jammed into a tight blind tunnel. Only one excavator can fit at a time, belly-down, feet sticking out. It is an incredibly challenging excavation circumstance.

Geologist Dr Hannah Hilbert-Wolf studying difficult to reach flowstones in a small side passage in the Dinaledi Chamber. Wits University

The most significant discovery is a partial skeleton of H. naledi, with parts of the arms, legs, a lot of the spine and many other pieces, as well as a beautifully complete skull and jaw. We named this skeleton “Neo”. We also recovered fragments of at least one other adult individual, and one child, although we suspect these bones may come from one or two more individuals.

Is there a way for people to view these discoveries in person?

On May 25 – Africa DayMaropeng at the Cradle of Humankind World Heritage Site outside Johannesburg will open a new exhibit with the discoveries from the Lesedi Chamber and the Dinaledi Chamber together for the first time.

For people outside South Africa, the data from our three-dimensional scans of the new Lesedi fossils are available online.

Anyone can download the 3D models, and people with access to a 3D printer can print their own physical copies of the new fossils, as well as the fossils from the Dinaledi Chamber. It’s a great way for people to see the evidence for themselves.

Reprint from The Conversation

The Famous Anaktuvuk Pass, Alaska

The famous Anaktuvuk Pass, Alaska:

Dr. Lewis Binford (1931 – 2011) spent 1969 living with a Nunamuit group to understand their way of life. He was particularly interested in the material culture of this group. If you can understand the biography of Nunamuit objects, maybe this could shed some light on the Mousterian Technocomplex. It was hoped that this would help him understand life for Homo neanderthalensis during the Ice Age in Europe.

The 1,000,000 year old child of Ngrejeng, Indonesia

NG 8503
Date Found: March 1985
Found By: Ngrejeng Villager
Locality: Near Ngrejeng Village, Indonesia
Announced: 1994
Fossil: Partial mandible (Right side), with M1 and M2. The latter had not yet erupted at time of death.
Age: 1.02 – 1.51 million years of age

Papers to check out:

1994 – Aziz et al – Preliminary report on recent
discoveries of fossil hominids from the Sangiran area, Java.

2005 – Kaifu et al – Hominid mandibular remains from Sangiran (1952-1986) Collection

2006 – Kaifu – Advanced dental reduction in Javanese Homo erectus

2011 – Wood – Encyclopedia of Human Evolution

Returning Kabwe Man To Zambia: Renewed Efforts for 2015

Everybody has heard of the Elgin Marbles and the debate surrounding the right’s of countries to those artefacts. These marbles are famous the world over but this story is repeated many more times not just in archaeology, but palaeoanthropology also.  Zambia was once a colony of the British Empire and it was during that time that a certain hominin skull E 686 was uncovered. This skull Mr-Kabimba-with-Hon.-Susan-Kawandami-in-Kaoma-for-the-Kazanga-ceremony-is now lies in the vaults of the South Kensington Museum, London. In Zambia, Deputy Minister Susan Kawandami (pictured) recently reported before the Zambian Parliament that years of talks failed to secure the return of E 686 to Zambia with the Natural History Museum, London prepared to make copies of the skull instead. Kawandami will now establish new discussions through UNESCO, while Minister of Chiefs and Traditional Affairs, Nkandu Luo will visit London to establish a dialogue with the Trustees of the Museum.

E 686

If the Natural History Museum is ever to return the fossil, one thing is for sure, Zambia will have to convince the London Museum, that it is proactive in heritage (particularly palaeoanthropological) promotion and will ensure great care for the priceless skull. Which is currently not the case. The famed locality has no interpretative centre, no sign, no indication that two pivotal hominin bones – E 686 (Skull) and E 691 (tibia), were uncovered there. On the 17th of June 1921, A. S. Armstrong and A. W. Whittington uncovered those remains at Mutwe wa Nsofu, Mulungushi Road, Kabwe, Zambia. That same year, the fossils were given a new human species name – Homo rhodesiensis. This species has, thus far, only ever been found in Africa and it is a species that is seldom used by palaeoanthropologists. Most consider it a variation of Homo heidelbergensis. A key species that diverged into Homo sapiens (in Africa) and Homo neanderthalensis (in Europe). From about 1.5 million to 500,000 years ago, is a time that palaeoanthropologists have difficulty understanding due to the particularly patchy fossil record. So, what I have described is quite simplistic and many would argue over the exact details. The two fossils represent two adults males, that lived around 1 million years ago. Sadly, given they were found in the 1920’s, excavations in the field of human evolution were in their infancy and so, grossly inaccurate. The only way to date the site was through biostratigraphy. By looking at the animals that were found in the layers in which the fossils were found, later palaeoanthropologists compared those assemblages to strata at other sites which were radiometrically dated. The Kabwe stratigraphy was quite similar to Bed IV at the Oldupai Gorge which was dated to between 780,000 years to 1.3 million years.


E 686 (Kabwe 1) fleshed out in this hyper-realistic reconstruction by John Gurche (

Zambia’s National Heritage and Conservation Commission (NHCC) is now in the process of rehabilitating the site. Chief executive officer of the commission, Collins Chipote warned that though the site was intact, it needs to be secured and developed. A Kabwe Mining museum was commissioned by Nkandu-LuoMinster Nkandu Luo (pictured), which will be run by the Lead-Zinc Mining company Enviro-Processing Ltd. a subsidary of the giant Berkeley Mineral Resources PLC. More effort is required on the part of Zambia to show that they have the determination to celebrate their priceless heritage and right now, there seems to be no action, but plenty of talking.

The ‘Black Hole’ of Palaeoanthropology – A Message For Isis

The ‘Black Hole’ of Palaeoanthropology is not a term you hear very often, but then again what is there to say about the biogeographic history of a 1.77 million square kilometer region (Turkey, Saudi Arabia, and Iran) with virtually no faunal, human or archaeological sites. At this point it would seem easy to resign yourself to the words of Timothy D. White at the dawn of the 21st century, that we are not going to find many more fossil hominins. The mark of a great palaeoanthropologist is to never give up that curiosity for the unknown. Since White’s depressing prediction, he has been roundhouse kicked to Wrongville, with the spectacular finds of Ethiopia, South Africa, Myanmar, China, Flores and much much more. We have learned so much thus far, don’t lets forget this. Sounds great but these inevitably throw up more questions than answers. And the ‘Black hole’ is a particularly hard nut to crack. middle_east_graphic_2003

What does archaeology have to offer? Ethiopia features the earliest concrete evidence for hominin stone tool manufacture. At 2.6 million years of age it predates the earliest known human – Homo habilis – by less than 300,000 years years (Fossil Code: A.L. 666). Saudi Arabia has a rather rich representation of Mode 1 (Oldowan) stone tool clusters. If you don’t know to millimeter accuracy where the stone tool was found, or if it is a surface find then it is worthless to science.  The Saudi sites were also used during the Holocene (11,700 years ago to present), begging the question how can you separate Early Pleistocene (2.5 million years ago to 700,000 years ago) from Holocene activity? At least we can tell that hominins took one route out of Africa. Stone tools similar to the Oldowan found at Perim Island supports the hypothesis that early hominins crossed the Bab al Mandab Strait (20 miles wide). Iran has probably the most depressing lack of archaeological evidence of the region. Isolated finds dominate, both the Oldowan and Acheulean records of Iran and few excavations have taken place. South of the Caspian Sea is the site of Ganj Par, which yielded 100 limestone tools within half a hectare. This assemblage shares similarities with those of Ubediya, Israel and the Oldupai Gorge (also known as the Olduvai Gorge), Tanzania. Turkey repeats much the same story. Of the 200 Palaeolithic sites, less than 25 have been even partially excavated. The majority are restricted to the fringes of the Anatolian plateau.  None are any older than 1.3 million years of age, further supported by Argon-Argon dating of Kula, western Turkey to 1.24 million years of age. The site was the location of a palaeomeander which contained a solitary Quartz flake, 5 x 4 cm. Volcanic activity interfered with the palaeomeander and it was that lava flow that allowed the date to be so accurate. The take-home-message from Turkey is the earliest securely dated archaeological remains support the 1.1 million years calculated for the Kocabas skullcap, which shares affinities with OH 9 and KNM ER 3733, attributed to H. erectus. Debate continues as to its taxonomic status, but it does reflect a great deal of H. erectus characteristics. The Archaeology tells us that hominins with the ability to make stone tools were already out of Africa 1.8 million years ago, at the site of Dmanisi, Georgia.Untitled-2

It is the richest fossil hominin location at the ‘black hole’ fringe. The Fall of 2013 was just another milestone in sites long history of archaeological investigation. The discovered cranium (D4500) was reunited with its jaw (D2600) and the team of palaeoanthropologists led by David Lordkipandize  concluded that the five individuals represented members of the same species, but retracted the classification of D2600 (Homo georgicus) for Homo erectus ergaster georgicus. This raised some eyebrows in the palaeoanthropological community, particularly Fred Spoor, palaeoanthropologist and lecturer at the UCL Department of Anthropology,  who pointed out that such an action is not outlined in the code of zoological nomenclature. This is a minor debate in the palaeoanthropology, but most agree that Homo erectus exhibited a variation comparable to that seen in modern Homo sapiens today. Dmanisi is proof that hominins were already out of the African continent by 1.8 million years. Additionally, although the dating of the hominins of Java are in the doldrums, these specimens could be as much as 1.8 million years of age. Prior to that time some hominin species made it’s way north, but which one?

Dmanisi, Georgia on the fringe of the palaeoanthropological 'Black Hole'

Dmanisi, Georgia on the fringe of the palaeoanthropological ‘Black Hole’

On the 23rd of January 1995, a French-Chadian team of palaeontologists discovered a fragment of fossil jaw (Fossil Code: KT 12/H1) lying on the gravel desert of northern Chad. The fossil (nicknamed “Abel”) could not be accurately dated, nevertheless stratigraphic layers nearby suggested it could as much as 3.5 million years of age. Back then, the river Bahr El Ghazal flowed into a 3 million square kilometer lake called Megachad.  This hominin foraged on grasses that dominated the Koro Toro region. The palaeontologists gave “Abel” a new species name – Australopithecus bahrelghazali distinguishing it from another australopithecean – Australopithecus afarensis. That species lived in the eastern region of the continent, over 2,500 km from the Bahr El Ghazal site. The animal remains found in the stratigraphic layers of both regions were pretty much identical, which means the ecosystems were the same. Therefore, you can see why some palaeoanthropologists consider it plausible that “Abel” is just another Au. afarensis. This goes back to the argument that, what we are looking at here is just another variation of the same species. Either way, here we have australopitheceans in eastern and north central Africa. Theoretically, it is plausible for australopitheceans to have made their way into Arabia.

Chadian Basin: The blue outlines the rough shape and size of Megachad. Note that KT 12/ H1 was uncovered at the site indicated as "KT".

Chadian Basin: The blue outlines the rough shape and size of Megachad. Note that KT 12/ H1 was uncovered at the site indicated as “KT”. (Lebatard et al – 2010 – Application of the authigenic 10Be/9Be dating method to continental sediments: Reconstruction of the Mio-Pleistocene sedimentary sequence in the early hominid fossiliferous areas of the northern Chad Basin)

Every organism has a landscape format that they thrive within. Lions are quite at home in the savannah, Tigers frolick in the dense jungles of the Indian subcontinent and hominins, particularly australopitheceans, were quite at home in savannahs. If we are to prove that they made their way into Arabia, there should be an extension of savannah into the Eurasia 3-4 million years ago. Sadly we are not seeing this, but what do we see. The faunal record of Saudi Arabia is particularly fragmented and sparse. Western Turkey (Calta) 2.3 million years ago, saw Raccoons, Giraffes, Hippos and the extinct “Running” Hyena. Many associate Bethlehem with the Christian story, but few know that at about the same time, this region featured Raccoons, Sabre-Toothed Cats, Rhino, an ancestor to the Mammoth and ancestor to the modern boar. While 110 kilometers north of Bethlehem and 700,000 years later, Baboons lived south of the Lake of Tiberias, around Ubeidiya. Lakes were magnets for faunal activity and therefore hominin activity.

The An Nedfud desert of northern Saudi Arabia is classic wilderness today, 2 million years ago it was the hub of a diverse ecosystem with a lake as the centrepiece. The faunal remains were recovered from three localities and share similarities with the kind of fauna you would expect at Ubeidiya and the Oldupai Gorge. Hippos were found at these sites and since modern day counterparts prefer standing water to a depth of 5 meters, it gives an initial sense of the size of ‘Lake An Nedfud’. A lake capable of supporting fish life, but this is not the only lake to have supported faunal biodiversity in the ‘Black Hole’. ‘Lake Negev’ developed around 1.8 and disappeared around 1.5 million years ago under ever increasingly arid conditions. It supported fish populations and laid down 15 m thick sediments over 18 sq km². Besides these lakes, there were smaller lakes, Oases and springs that would have allowed hominins to hop, skip and jump out of Isis territory and into the more accommodating environments of Europe and eastern Asia. Looking at the faunal remains you can get a sense of the climate that prevailed at whatever time period you are interested in. The climatic mapping of the Pliocene and Early Pleistocene of the ‘Black Hole’ are, you’ve guessed it understudied. We do know that two and a half million years ago, the forests of Azerbaijan gave way to Savannah and the Arabian peninsula experienced 2 million years of humid conditions, capable of keeping many large (now extinct) rivers topped up.

Distribution of Landscapes (Dowsett et al. 1994, Figure 11)

Distribution of Landscapes (Dowsett et al – 1994 – Joint investigations of the Middle Pliocene climate I: PRISM paleoenvironmental reconstructions)

There you have it. We know alot, but we know so very little about this massive region of the world. We lack fossil hominins in this region and I don’t think Isis would be willing in finding their early ape ancestry any time soon. It would definitely be a useful distraction from Wahhabism. Do something useful for a change, Isis! Get out there and find us those damn fossils! You ignorant misogynistic apes!

Meganthropus palaeojavanicus – The Early Years of Palaeoanthropological Research (1942 – 1955)

Meganthropus palaeojavanicus (from the Ancient Greek, meaning Ancient Java’s Great Human) is a redundant genus and species that was first formally introduced by Gustav vonKoenigswald (1902 – 1982) in 1950. The genus once referred to a set of fossils found on the island of Java in the 1930’s, 1940’s, 1950’s and 1980’s. The Javan fossils are now attributed to the hominin Homo erectus that lived from 1.9 million years ago to 300,000 years ago and had a range from Africa to Eurasia.

vonKoenigswald’s Meganthropus palaeojavanicus


Gustav Heinrich Ralph vonKoenigswald (1902 – 1982)

On the 15th of January 1942, the Director of the Geological Survey of the Netherlands Indies, W. C. B. Koolhoven wrote a letter to anatomist and palaeoanthropologist, Franz Weidenreich informing him that vonKoenigswald wishes the 1939 and 1941 to be attributed to a new genus and species of ape called M. palaeojavanicus. In 1945, Weidenreich referred to it as “vonKoenigswald’s Meganthropus palaeojavanicus”. Held in the Senckenberg Forschungsinstitute und Naturmuseum, an unpublished 1949 scientific paper written by vonKoenigswald proposes that Sangiran 1a,  It was not until 1950, the vonKoenigswald committed his new genus and species to print in a formal introduction. As the sixth decade of the 20th century developed, consensus shifted towards H. erectus as the taxonomic appellation of the Javan fossils.

“Meganthropus” Fossils

The following are a list of fossils that were taxonomically assigned to Meganthropus, but have now been officially assigned to H. erectus

Franz Weidenreich

Franz Weidenreich (1873 – 1948)

Sangiran 6a

Kromopawiro (a team member) discovered the fossil adult mandible fragment “near Glagahombo, north of Sangiran” not far from where another cranium was uncovered in 1939 and south of Sangiran 4’s location. Weidenreich described the 1.6 million year old fossil in 1945, in which he pointed out the size of the mandible and the primitive premolar morphology as evidence to support the application of a new genus and species – M. palaeojavanicus. This conclusion was revised in 1989, when Kramer concluded that the size was within the size range of H. erectus.

Sangiran 7

Dating to between 1.51 and 1.6 million years of age, Sangiran 7 (comprising 54 teeth) was recovered from 1937 to 1941. Fred Grine analysed some of the teeth in 1984, but it would be a decade later before he revised his earlier conclusion that they were hominin. As a result, three teeth FS 67, 72 and 83 were re-attributed to Pongo sp.

Wilfrid Le Gros Clark (1895 – 1971)

Sangiran 8

Uncovered in 1952, Sangiran 8 comprises fragment of mandible, with some teeth roots intact and a complete third molar crown. This individual is interpreted to have died in the jaws of a crocodile, based upon the scare marks on the fossil. The fossil was first described in 1953 by P. Marks concluding it lay outside the size range of H. erectus. In 1955, Le Gros Clark concluded that the fossil was within the range of H. erectus and that has remained the official attribution for Sangiran 8 ever since.

Sangiran 27

This partial adult cranium was first found in 1978 near Sangiran village, north of the River Chemoro and it was found as construction was underway on a new dam. The skull was found in the upper levels of the Sangiran Formation dating to between 1.66 and 1.58 million years of age. The fossil was described by Teuku Jacob in 1980, in which he attributed it to Meganthropus but was taxonomically revised in 2008 for reasons similar to the taxonomic revision of Sangiran 8. Indriati and Anton (2008) also noted that hyper-robust features of the fossil reflects earlier representatives of H. erectus.

Modern Uses of Meganthropus

Though taxonomically and scientifically redundant, Meganthropus is used by pseudoscientific Creationists as evidence for the Nephilim, giants that lived before Noah’s flood, referenced from an Iron Age manuscript called the “Book of Enoch”.

Norandino and Lucina Discovered by the Ogre (1624) – Giovanni Lanfranco (1582 – 1647)

A trickle of scientific papers and posters have been published and presented over the decades, claiming evidence for Meganthropus. Authors have suggest that Sangiran 5 is evidence of the existence of an older, “more robust morph”, with pongo-like characteristics. Suggesting that a Gigantopithecus-like counterpart lived in island South-East Asia. The most recent appearance of support for Meganthropus was at the 83rd annual meeting of the American Association of Physical Anthropologists in 2014, a team of scientists led by Clement Zanolli presented a poster on their analysis of a fossil mandible fragment code named Arjuna 9. They suggested that teeth had enamel thickness and dental tissue proportions that differed from those seen in H. erectus. The statistical analysis of the enamel-dentine junction also seemed to support an attribution to Pongo sp. The fact remains, no evidence exists to support classifying the Javan fossils as Meganthropus.