How forensic science can unlock the mysteries of human evolution

image-20161220-26741-nuu3lc.JPG

People are fascinated by the use of forensic science to solve crimes. Any science can be forensic when used in the criminal and civil justice system – biology, genetics and chemistry have been applied in this way. Now something rather special is happening: the scientific skill sets developed while investigating crime scenes, homicides and mass fatalities are being put to use outside the courtroom. Forensic anthropology is one field where this is happening.

Loosely defined, forensic anthropology is the analysis of human remains for the purpose of establishing identity in both living and dead individuals. In the case of the dead this often focuses on analyses of the skeleton. But any and all parts of the physical body can be analysed. The forensic anthropologist is an expert at assessing biological sex, age at death, living height and ancestral affinity from the skeleton.

Our newest research has extended forensic science’s reach from the present into prehistory. In the study, published in the Journal of Archaeological Science, we applied common forensic anthropology techniques to investigate the biological sex of artists who lived long before the invention of the written word.

We specifically focused on those who produced a type of art known as a hand stencil. We applied forensic biometrics to produce statistically robust results which, we hope, will offset some of the problems archaeological researchers have encountered in dealing with this ancient art form.

Sexing rock art

Ancient hand stencils were made by blowing, spitting or stippling pigment onto a hand while it was held against a rock surface. This left a negative impression on the rock in the shape of the hand.

Experimental production of a hand stencil. Jason Hall, University of Liverpool

These stencils are frequently found alongside pictorial cave art created during a period known as the Upper Palaeolithic, which started roughly 40 000 years ago.

Archaeologists have long been interested in such art. The presence of a human hand creates a direct, physical connection with an artist who lived millennia ago. Archaeologists have often focused on who made the art – not the individual’s identity, but whether the artist was male or female.

Until now, researchers have focused on studying hand size and finger length to address the artist’s sex. The size and shape of the hand is influenced by biological sex as sex hormones determine the relative length of fingers during development, known as 2D:4D ratios.

But many ratio-based studies applied to rock art have generally been difficult to replicate. They’ve often produced conflicting results. The problem with focusing on hand size and finger length is that two differently shaped hands can have identical linear dimensions and ratios.

To overcome this we adopted an approach based on forensic biometric principles. This promises to be both more statistically robust and more open to replication between researchers in different parts of the world.

The study used a branch of statistics called Geometric Morphometric Methods. The underpinnings of this discipline date back to the early 20th century. More recently computing and digital technology have allowed scientists to capture objects in 2D and 3D before extracting shape and size differences within a common spatial framework.

In our study we used experimentally produced stencils from 132 volunteers. The stencils were digitised and 19 anatomical landmarks were applied to each image. These correspond to features on the fingers and palms which are the same between individuals, as depicted in figure 2. This produced a matrix of x-y coordinates of each hand, which represented the shape of each hand as the equivalent of a map reference system.

Figure 2. Geometric morphometric landmarks applied to an experimentally produced hand stencil. This shows the 19 geometric landmarks applied to a hand. Emma Nelson, University of Liverpool

We used a technique called Procrustes superimposition to move and translate each hand outline into the same spatial framework and scale them against each other. This made the difference between individuals and sexes objectively apparent.

Procrustes also allowed us to treat shape and size as discrete entities, analysing them either independently or together. Then we applied discriminant statistics to investigate which component of hand form could best be used to assess whether an outline was from a male or a female. After discrimination we were able to predict the sex of the hand in 83% of cases using a size proxy, but with over 90% accuracy when size and shape of the hand were combined.

An analysis called Partial Least Squares was used to treat the hand as discrete anatomical units; that is, palm and fingers independently. Rather surprisingly the shape of the palm was a much better indicator of the sex of the hand than the fingers. This goes counter to received wisdom.

This would allow us to predict sex in hand stencils which have missing digits – a common issue in Palaeolithic rock art – where whole or part fingers are often missing or obscured.

Palaeo-forensics

This study adds to the body of research that has already used forensic science to understand prehistory. Beyond rock art, forensic anthropology is helping to develop the emergent field of palaeo-forensics: the application of forensic analyses into the deep past.

For instance, we have been able to understand fatal falls in Australopithecus sediba from Malapa and primitive mortuary practices in the species Homo naledi from Rising Star Cave, both in South Africa.

All of this shows the synergy that arises when the palaeo, archaeological and forensic sciences are brought together to advance humans’ understanding of the past.

The above article was reprinted from The Conversation

The Infectious Diseases of Migrant Populations

20151030_Syrians_and_Iraq_refugees_arrive_at_Skala_Sykamias_Lesvos_Greece_2.jpg
Syrian and Irawi immigrants getting off a boat from Turkey on the Greek island of Lesbos

The year 2015 will be remembered for the sudden increase of asylum seekers and refugees into Europe and this looks set to continue. Many academic studies attempted to estimate the risk of infectious disease thanks to this increased migration, but these fail to take into account the reasons for this migration. Most are assumed to have the same disease, which is not likely and so Professor Christian Wejse of the Department of Infectious Diseases, Aarhus University set out to find out the prevalence of different diseases among different migrant populations. Generally, refugees have high risk of contracting tuberculosis, hepatitis B and HIV, with cutaneous diphtheria, relapsing fever and shigella appearing to a lesser extent. Hepatitis C and malaria was considered low risk among migrant populations. So, what explains the patterns we see here. Poor living conditions during migrations featured as the primary culprit, which was tracked along migration routes. Despite high transmission of disease by the migrant population, the risk to the population of the host country was significantly low. This research demonstrates that there is a need for the creation of a standard for health reception and a reporting of asylum seekers and refugees.

Professor Christian Wejse discussed the results of his research at the Society for the study of Human Biology (SSHB) Conference in early December of 2016, at the Aarhus Institute of Advanced Studies, Aarhus, Denmark.

 

 

Gorjanović-Kramberger Hypothesis: Took 99 Years, But We Finally Tested It

You meet Homo neanderthalensis in a dark alley……………….What do you do?

Homo neanderthalensis is one of the best understood species of hominin today. One that lasted many hundreds of thousands of years throughout Europe. Despite what we know through the lens of science, there is still much that we want to know about this species of human. Interrogating the subtle pieces of evidence is the task of palaeoanthropologists, archaeologists, palaeoenvironmental scientists throughout the world. Contrary to what you may see on your average human evolution documentary, the kind of research conducted can be much more subtle. Here I will draw your attention to a difficult question. If we could fill the Great Hall of the South Kensington Museum with a few hundred individuals of our extinct cousin, what differences would we see in the upper chest and neck. The answer to that, at the beginning of 2015: We are not happy that we really know enough to give an answer.

Range_of_Homo_neanderthalensis
Range of Homo neanderthalensis

H. neanderthalensis is a well represented species of human in the fossil record, but the post-cranial anatomy is less well accounted for than the skulls. Not ideal for an investigation into the chest and abdominal regions of the human body. Nevertheless, it is vital we exhaustively examine what we have, to reveal potential clues to the kind of morphology these populations once exhibited. To that end, ten palaeobiologists from various Spanish academic institutions presented evidence that may be useful here. The mechanics of the breathing system, constrained by the rib cage and not the evolution of the species, is the focus here. Research continues to be a work in progress, new technologies arrive and they help further our understanding of the past. This research is no exception. Two year into the new millennium a new form of analysis that gauged quantity within a structure was applied to a collection of isolated ribs from an individual codenamed Shanidar 3. This individual had a more splayed lower rib cage compared to the more barrel-like form of our lower rib cage. Thus started a series of papers that suggested the lower rib cage of Homo neanderthalensis was generally less like ours. Comparatively less investigative research has been given to the upper end of the rib cage. This latest academic paper sets out to help understand just that.

Title and Authors of the Paper in Question
Title and Authors of the Paper in Question
640px-Krapina_-_Dragutin_Gorjanovic_Kramberger
Dragutin Gorjanović-Kramberger (1856 – 1936)

In 1906 and a time when ancient humans were Anti or Post Diluvian Era (Noah’s Great Flood), Dragutin Gorjanović-Kramberger suggested that the superior ribs are an important facet of an upper thoracic orchestra of components, that together control upper thoracic breathing, separate from diaphragmatic breathing. It was not until 2015 that this hypothesis was put to the test on six hominin first-ribs from the cave site of El Sidrón, Asturias, northern Spain. The six first-rib fragments may represent, at most, four individuals. The first step was to identify the bone fragments and place them in their correct anatomical position. Below is a re-organisation of the information given about the sample itself. The first-rib of Kebara 2 was found to be similar in shape space and form space (both terms used in a statistical analysis of shape, known as Procrustes Least Squares (PLS)) to SD-1767 and SD-1699, indeed H. neanderthalensis exhibits straighter first-ribs than modern day Homo sapiens. What could this mean? The scalene muscles are the ones that give your neck, its shape. They run from the Rib 1 and Rib 2 up the side of your neck attaching to the vertebrae. Alteration in shape of the first ribs, and the attached muscles will have to operate differently, but may help explain the differences we see between H. sapiens and H. neanderthalensis. The principle component analysis (PCA) reveals some overlap in the linearity of the rib shaft. Such results are reflected in analysis of the specimens of Krapina Cave, Croatia and ATD6-108 representing Homo antecessor, from Gran Dolina Cave, Atapuerca, Spain. So, the straightness of the first-ribs may affect the movement of the upper torso during breathing.

Juvenile 1: SD-2148 (Right) and SD-2172 (Left)

Juvenile 2: SD-417 (Left) and SD-1225 (Right)

Large Adolescent / Small Adult: SD-1767 (Left)

Large Adult: SD-1699 (Right)

Looking at the juveniles, it is important to understand costal cartilage development. Understanding adult H. neanderthalensis individuals is easier, as there are more post-cranial fossils, but the El Sidrón hominins will be useful in understanding the ontogeny of costal cartilage in future fossil ribs of  juveniles. The El Sidrón juveniles confirm a tighter upper chest for H. neanderthalensis. The first-ribs are smaller, but feature larger attachments at the rib heads, whereas the lower ribs have smaller attachment points. Therefore, a H. neanderthalensis individual, exhibited a smaller upper torso, which was further from the cranium thanks to the slightly longer neck vertebrae. First-ribs that are straighter would have to project out from the skeleton more and Gorjanović-Kramberger proposed that the rest of the rib-cage would project outward, just as much. The scientific team added to this, that a change in the first ribs would in turn affect the rest of the rib-cage, because the ribs are latched together with intercostal muscle, preventing individual ribs from varying in shape, that ultimately allows coordination of muscle, chest wall and breathing action. Upper ribs connect directly with the sternum and so, result in distinctive rib shape compared with the lower thorax.

Association of Intercostal Muscle and Rib Bone
Association of Intercostal Muscle and Rib Bone

To summarise, the first ribs appear to determine the shape of the upper thorax ribs, but straightness of the first rib is linked with the straightness of the upper ribs. Together, this suggests the existence of different rib shape and functions between the upper and lower thorax. When you look at a particular fossil specimen, it is important you are aware of what bones, muscles, cartilage was associated with it. They all interact in subtle ways which we are piecing together in hominins, with the variety in body forms available going back 7 million years. In examination of the monophyly of Paranthropus, cladistical statistics showed us that the skeletal points used, should not be linked with eachother. An example of that, would be the masticatory system in Paranthropus comprising numerous points, all interacting with one another. This is a shame because the crania and mandibles are predominantly all we have of that genus. Currently, most are happy that Paranthropus boisei, Paranthropus aethiopicus and Paranthropus robustus are part of the same family – they are monophyletic. The rib cage, is similar to the masticatory system but it is a single unit with two functions, one  is upper thoracic respiration and the other is diaphragmatic respiration. H. neanderthalensis evolved a more restrictive respiratory system and highly developed arm muscles, evolutionarily more important for the condition in which it lived. So, if you were to meet our ancient ancestor in a dark alley, what should you do? It would have been prone to breathlessness, but could rearrange your face easier. Moral of the story, RUN!

The costal remains of the El Sidrón Neanderthal site (Asturias, northern Spain) and their importance for understanding Neanderthal thorax morphology

Social Media Destinations:

Facebook

Twitter

Google+

Academia.edu

SoundCloud