More light shed on use of plants by Homo neanderthalensis

The ecology of Neanderthals is a pressing question in the study of hominin evolution. Diet appears to have played a prominent role in their adaptation to Eurasia. Based on isotope and zooarchaeological studies, Neanderthal diet has been reconstructed as heavily meat-based and generally similar across different environments. This image persists, despite recent studies suggesting more plant use and more variation. However, we have only a fragmentary picture of their dietary ecology, and how it may have varied among habitats, because we lack broad and environmentally representative information about their use of plants and other foods. To address the problem, we examined the plant microremains in Neanderthal dental calculus from five archaeological sites representing a variety of environments from the northern Balkans, and the western, central and eastern Mediterranean. The recovered microremains revealed the consumption of a variety of non-animal foods, including starchy plants. Using a modeling approach, we explored the relationships among microremains and environment, while controlling for chronology. In the process, we compared the effectiveness of various diversity metrics and their shortcomings for studying microbotanical remains, which are often morphologically redundant for identification. We developed Minimum Botanical Units as a new way of estimating how many plant types or parts are present in a microbotanical sample. In contrast to some previous work, we found no evidence that plant use is confined to the southern-most areas of Neanderthal distribution. Although interpreting the eco-geographic variation is limited by the incomplete preservation of dietary micro remains, it is clear that plant exploitation was a widespread and deeply rooted Neanderthal subsistence strategy, even if they were predominately game hunters. Given the limited dietary variation across Neanderthal range in time and space in both plant and animal food exploitation, we argue that vegetal consumption was a feature of a generally static dietary niche.

Dental calculus indicates widespread plant use within the stable Neanderthal dietary niche

Robert C. Power, Domingo C. Salazar-García, Mauro Rubini, Andrea Darlas, Katerina Harvati, Michael Walker, Jean-Jacques Hublin, Amanda G.Henry

DOI: 10.1016/j.jhevol.2018.02.009

New evidence on the diet of the Homo antecessor from Atapuerca

A team led by experts of the University of Barcelona, the Catalan Institute of Human Paleoecology and Social Evolution (IPHES) and the University of Alicante, analyzes for the first time the diet of the Homo antecessor with the study of the microscopic traces left by abrasive particles of food on dental enamel surfaces 

According to the new study, published in the scientific journal Scientific Reports, the Homo antecessor processed and consumed food differently from Lower Pleistocene hominines

The dietary pattern of the Homo antecessor could be related to an environment with significant fluctuations in climate and food availability

The Homo antecessor, a hominin species that inhabited the Iberian Peninsula around 800,000 years ago, would have a mechanically more demanding diet than other hominin species in Europe and the African continent. This unique pattern, which would be characterized by the consumption of hard and abrasive foods, may be explained by the differences in food processing in a very demanding environment with fluctuations in climate and food resources, according to a study published in the journal Scientific Reports and led by a team from the University of Alicante, the Faculty of Biology of the University of Barcelona and the Catalan Institute of Human Paleoecology and Social Evolution (IPHES).

This new research, which reveals for the first time the evidence on the diet of these hominines with the study of the microscopic traces left by food in the dental enamel, counts with the participation of the researchers Alejandro Pérez-Pérez and his team, formed by the doctors Laura Martínez, Ferrán Estebaranz, and Beatriz Pinilla (UB), Marina Lozano (Catalan Institute of Human Paleoecology and Social Evolution, IPHES), Alejandro Romero (University of Alicante), Jordi Galbany (George Washington University, United States) and the co-directors of Atapuerca, José María Bermúdez de Castro (National Research Centre on Human Evolution, CENIEH), Eudald Carbonell (IPHES) and Juan Luís Arsuaga (Universidad Complutense de Madrid).

Before /Prior to this research, the diet of the hominines of the Lower Pleistocene of Atapuerca (Burgos, Spain), our most remote European ancestors, had been inferred from animal remains –a great variety of large mammals and even turtles– found in the same levels in which the human remains were found. Evidence of cannibalism has also been suggested in some of these fossils.

Foods that leave a mark on the enamel

The study is based on the analysis of the buccal microwear pattern of the fossils from Trinchera  Elefante and Gran Dolina in the Atapuerca site. The examined microwear features are small marks on the buccal teeth enamel surface , whose density and length depend on the types of chewed food. “The usefulness of this methodology has been proved by the study of the microwear patterns of present populations, both hunter-gatherer and agricultural, showing that different feeding patterns correlate with specific microwear patterns in the vestibular surface of the dental crown”, explains Professor Alejandro Pérez-Pérez, professor at the Zoology and Biological Anthropology Unit of theof the Department of Evolutionary Biology, Ecology and Environmental Sciences at the University of Barcelona.

In the new study, the Atapuerca fossils have been compared with samples from other Lower Pleistocene populations: with fossils of the African Homo ergaster, ancestors of all Europeans dated from 1.8 million years ago; and also with Homo heidelbergensis, which appeared more than 500,000 years ago in Europe and lasted until at least 200,000 years ago, and finally with Homo neanderthalensis, specimens from the Iberian Peninsula that lived between 200,000 and 40,000 years ago.

Atapuerca4Higher striation densities in Homo antecessor

The results of the study show that the teeth of H. antecessor show higher striation densities than the rest of the analyzed species. “Our findings do not allow us to say exactly what foods they ate, since the abrasive materials that cause the marks on the teeth may have different origins, but they do allow us to point out that H. antecessor would have had a diet largely based on hard and abrasive foods, such as plants containing phytoliths (which are silica particles produced by plants that are as hard as enamel), tubers with traces of soil particles, collagen or connective tissue and bone or raw meat”, says the researcher.

The researchers suggest that differences in the Gran Dolina microwear patterns among the compared samples could reflect cultural differences in the way food was processed. “Hunting and gathering activities are consistent with the highly-abrasive wear pattern we have encountered, but it is very difficult to think that the available food in the Atapuerca area was very different from that available to other hunter-gatherer hominins. Therefore, it would be the different ways of processing the food that would give rise to these differences in the dental microwear patterns. That is to say, they obtained, processed and consumed the food in different ways”, explains Alejandro Pérez-Pérez, who leads a team that has also applied this methodology in the study of feeding behaviors of the hominins of the Pleistocene of East Africa, including the species Paranthropus boiseiand Homo habilis.

Atapuerca1A more primitive lithic industry

This pattern of great abrasiveness, observed on the enamel teeth surfaces in Gran Dolina contrasts with what has been observed in the compared species in the study. “UnlikeH. neanderthalensis, which had a more advanced lithic industry (called Mode 3 or Mousterian), the tools that have been found related to Homo antecessor are primitive (Mode 1). These industries would not facilitate food processing, as also suggested by evidence that they used teeth to chew bones. In addition, the lack of evidence of the use of fire in Atapuerca suggests that they would surely eat everything raw, causing more dental wear, including plant foods, meat, tendons or skin.

Atapuerca2For the researchers, a diet with a high meat consumption could have evolutionary implications. “Meat in the diet could have contributed to the necessary energy gain to sustain a large brain like that of H. antecessor, with a brain volume of approximately 1,000 cubic centimeters, compared to the 764 of H. ergaster, but it would also represent a significant source of food in a highly demanding environment where preferred foods, such as ripe fruits and tender vegetables, would vary seasonally”.

The research contributes significantly to the better understanding of the dietary adaptations of our ancestors and highlights the importance of the ecological and cultural factors that have conditioned our biological evolution.

Paper reference:

A. Pérez-Pérez, M. Lozano, A. Romero, L. M. Martínez, J. Galbany, B. Pinilla, F. Estebaranz-Sánchez, J. M.  Bermúdez de Castro, E. Carbonell y J. L. Arsuaga. «The diet of the first Europeans from Atapuerca». Scientific Reports, February, 2017.


IN THE MICROSCOPE, Aliejandro Romero, the researcher of the University of Alicante qu eha participated in the project

Reprint from University of Alicante

Abel Lived 3.5 Million Years Ago Along The Shores of Megachad – Australopithecus bahrelghazali

On the 23rd of January 1995, a team of palaeontologists discovered a fragment of fossil jaw lying on the gravel desert of northern Chad. The fossil could not be accurately dated, nevertheless stratigraphic layers nearby suggested it could be around 3.5 million years of age. Back then, the site of Koro Toro was on the edge of africa-11117a 3 million square kilometre Lake called Megachad. The fossil, now codenamed KT 12/H1 consisted of the front portion of the jaw with a number of teeth still in place. By using Isotopic analysis the diet of the hominin shortly before it died, can be determined. The fossil showed a preference for C4 plants, including sedges and grasses, suggesting that the area around Koro Toro was predominantly grassland. Comparing the fossil to other hominins, the features were considered very different compared to Australopithecus afarensis, 2,500 km away in Ethiopia and Kenya. The French team, led by Michel Brunet, concluded the fossil was part of a new species of AustralopithecusAustralopithecus bahrelghazali. This caused a bit of a stir in the palaeoanthropological community, but progressively began to die down. The lack of fossil finds in Chad thereafter contributed to the rate at which the palaeoanthropological community forgot about the fossil, that was, until 2001. Given the same variety of animals can be found in both Ethiopia and Chad, it is not a stretch to imagine australopithecines travelling between the two regions three million years ago and many palaeoanthropologists now consider the fossil, a variant of Australopithecus afarensis.

KT12/H1 the holotype of Australopithecus bahrelghazali

How did the fossil make palaeoanthropologists rethink their understanding human evolution? “Abel” as the fossil became to be known reminded palaeoanthropologists that human evolution could have been more complex than previously accepted. Though once you considered the features of an Australopithecus afarensis jaw and compare that to “Abel”, it is acceptable to attach it to the Ethiopian hominin. The differences are subtle. It is worth reminding here however that the use of species names don’t tell us much about the hominins palaeobiology, are primarily to put, order to our understanding of evolution and are a useful means of scientific communication. Palaeoanthropology has had a long history of naming new species, when later we realize we were too optimistic. In the sense, that we forget how useless this venture is. More is learned from the fossils, about a hominins diet, locomotion patterns and physical characteristics than what species it belongs too. Thankfully, science is less focused on this and we are now learning much more about the hominin and the ecosystem it was once a part of. The second way in which “Abel” got us thinking, was via the surprise geographic location. Up until that time, any fossil finds made on the continent of Africa were made exclusively in eastern and southern Africa. “Abel”, reminded us that hominins were not just restricted to those regions and likely could be found all over Africa. Exciting though this prospect was, it could not solve the problem of preservation in areas where fossils cannot survive, in the hostile environments of the Sahel.

A Gravel Desert in Tunsia

Discovery of the Paranthropus of Peninj

This evening on the 11th of January 1964, fossil hunter Kamoya Kimeu (1940-Present) was crossing what had been an Early Pleistocene delta to the western side of Lake Natron, Arusha, Tanzania. He was there with a team led by Richard Leakey in search of our earliest ancestors. Barely a few days into the expedition, Kimeu found a hominin mandible, not one of our ancestors, but just an intriguing. It is 1964 and by this time, OH 5, representative of Paranthropus boisei was already gracing the covers of magazines throughout the world. Thought to be the first human that used stone tools for the first time, the Nutcracker Man was not all he was cracked up to be. As more hominin fossils from the Late Pliocene and early Pleistocene began to show, it became more and more clear, that while P. boisei may have been found on an archaeological layer, this is not enough evidence to support a “he’s the first human” hypothesis.

Ol Doinyo Lengai: A View from Lake Natron

Kimeu had found another representative of P. boisei at Peninj and it was a remarkably complete hominin mandible. The right condyle was missing and so too were the left and right coronoid processes, despite that the fossil had its complete set of teeth and that was particularly key. The teeth showed a great deal of wear  to the point that you could see the dentine beneath the enamel. This individual must have eaten alot of sedges and grasses throughout its life to give that sort of result. Grasses and sedges that you could find around deltas like that one that would have entered Lake Natron, when it wasn’t quite as salty. But when exactly did our hominin friend give up its spirit along the shores of the Lake. The stratigraphic layers in the region are like the pages of a picture book, no words, but pictures that can tell better narratives that Twilight could ever even dream of. The mandible was uncovered in a sedimentary layers, comprising the deltas alluvial deposits, sandwiched between two volcanic layers. The volcanic Tuff atop the layer that contained the fossil was previously dated to between 1.6 and 1.4 million years of age, while the basalt below was dated to 1.7 million years of age. You may think that the fossil is probably going to be between 1.7 and 1.4 million years of age, but the team of geologists at the site conducted further analysis at the site to help get a more accurate result. They settled on an age for the mandible of between 1.5 and 1.3 million years of age. Enough time for the ph of a lake to reach beyond 12.

View of Lake Natron and a superimposed graphic of the hypothetical organisation of the layers around the fossil.

Since the discovery of the Peninj 1 mandible in 1964, another hominin with similar characteristics to P. boisei was found. Paranthropus aethiopicus now joined a trio of hominin species that became the Paranthropines, comprising boisei, robustus (South African hominin) and aethiopicus. Most of what we have collected of these creatures are crania and mandibles, though some postcranial remains have been found. Thankfully the teeth survive well and can tell us a great deal about their diet and the subtle, yet important questions of how they chew their greenery. There was a long drawn out debate over whether these three hominins deserved to live in a separate group – the Paranthropines. Originally, these hominins were classified as robust australopithecines and the palaeoanthropological community decided that a change was needed. The complete anatomy of the Peninj Hominin was never recovered and given that the mandible survived so well, this individual may have fallen to a carnivore in the delta. Below is a summary of the discovery that was made on the 11th of January 1964.

What about insects in hominin diets?

For those fans of human evolutionary research news, you will be well aware of the lack of research into the role insects played in the diet of hominins over the past 6 or so million years.


An Ant! – Credit: Wiki Commons

This topic was addressed back in 2001 in the chapter of an academic volume by William McGrew of the department of Archaeology and Anthropology, University of Cambridge. Since then nothing has been done to address ways in which such an investigation could be conducted. What can be done to address this? Look at what we………..modern primate diets and the role insects play in their diets from the human to the Orang-utan. Let’s then look at the earliest evidence for hominin consumption of insects. South Africa has nabbed that prize, thus far. The Lower Palaeolithic sites of Swartkrans, Sterkfontein and Drimolen contained hominin fossil bone tools with wear patterns similar to those wear patterns you find on sticks used by Chimps to fish for termites. Fossil remains of Paranthropus robustus were found at these sites and the evidence suggests they were feasting on termites.


Paranthropus boisei (Extinct cousin of Paranthropus robustus) – Credit: Wiki Commons

Examining the fossil evidence is one focus, but there are others including, lithics, residues, dental microwear, stable isotopes, DNA and coprolites (Fossilised shit…..basically). The dental microwear is quite problematic, because you have to take note that the tooth has been in the earth for millions of years (2.4 million years for the earliest Paranthropus specimen). Stable isotopic research is the much more promising of the topics discussed in William McGrew’s latest paper for the Journal of Human Evolution.


Social Media Destinations: