The Fossil Hominin remains of Sangiran, Java

Evolution, History, Human Evolution, Human Origins, Palaeoanthropology, Palaeontology, Paleoanthropology, Paleontology, Science

Meganthropus palaeojavanicus (from the Ancient Greek, meaning Ancient Java’s Great Human) is a redundant genus and species that was first formally introduced by Gustav vonKoenigswald (1902 – 1982) in 1950. The genus once referred to a set of fossils found on the island of Java in the 1930’s, 1940’s, 1950’s and 1980’s. The Javan fossils are now attributed to the hominin Homo erectus that lived from 1.9 million years ago to 300,000 years ago and had a range from Africa to Eurasia.

vonKoenigswald’s Meganthropus palaeojavanicus

Gustav Heinrich Ralph vonKoenigswald (1902 – 1982)

On the 15th of January 1942, the Director of the Geological Survey of the Netherlands Indies, W. C. B. Koolhoven wrote a letter to anatomist and palaeoanthropologist, Franz Weidenreich informing him that vonKoenigswald wishes the 1939 and 1941 to be attributed to a new genus and species of ape called M. palaeojavanicus. In 1945, Weidenreich referred to it as “vonKoenigswald’s Meganthropus palaeojavanicus”. Held in the Senckenberg Forschungsinstitute und Naturmuseum, an unpublished 1949 scientific paper written by vonKoenigswald proposes that Sangiran 1a,  It was not until 1950, the vonKoenigswald committed his new genus and species to print in a formal introduction. As the sixth decade of the 20th century developed, consensus shifted towards H. erectus as the taxonomic appellation of the Javan fossils.

“Meganthropus” Fossils

The following are a list of fossils that were taxonomically assigned to Meganthropus, but have now been officially assigned to H. erectus

Franz Weidenreich
Franz Weidenreich (1873 – 1948)

Sangiran 6a

Kromopawiro (a team member) discovered the fossil adult mandible fragment “near Glagahombo, north of Sangiran” not far from where another cranium was uncovered in 1939 and south of Sangiran 4’s location. Weidenreich described the 1.6 million year old fossil in 1945, in which he pointed out the size of the mandible and the primitive premolar morphology as evidence to support the application of a new genus and species – M. palaeojavanicus. This conclusion was revised in 1989, when Kramer concluded that the size was within the size range of H. erectus.

Sangiran 7

Dating to between 1.51 and 1.6 million years of age, Sangiran 7 (comprising 54 teeth) was recovered from 1937 to 1941. Fred Grine analysed some of the teeth in 1984, but it would be a decade later before he revised his earlier conclusion that they were hominin. As a result, three teeth FS 67, 72 and 83 were re-attributed to Pongo sp.

Wilfrid Le Gros Clark (1895 – 1971)

Sangiran 8

Uncovered in 1952, Sangiran 8 comprises fragment of mandible, with some teeth roots intact and a complete third molar crown. This individual is interpreted to have died in the jaws of a crocodile, based upon the scare marks on the fossil. The fossil was first described in 1953 by P. Marks concluding it lay outside the size range of H. erectus. In 1955, Le Gros Clark concluded that the fossil was within the range of H. erectus and that has remained the official attribution for Sangiran 8 ever since.

Sangiran 27

This partial adult cranium was first found in 1978 near Sangiran village, north of the River Chemoro and it was found as construction was underway on a new dam. The skull was found in the upper levels of the Sangiran Formation dating to between 1.66 and 1.58 million years of age. The fossil was described by Teuku Jacob in 1980, in which he attributed it to Meganthropus but was taxonomically revised in 2008 for reasons similar to the taxonomic revision of Sangiran 8. Indriati and Anton (2008) also noted that hyper-robust features of the fossil reflects earlier representatives of H. erectus.

Modern Uses of Meganthropus

Though taxonomically and scientifically redundant, Meganthropus is used by pseudoscientific Creationists as evidence for the Nephilim, giants that lived before Noah’s flood, referenced from an Iron Age manuscript called the “Book of Enoch”.

Norandino and Lucina Discovered by the Ogre (1624) – Giovanni Lanfranco (1582 – 1647)

A trickle of scientific papers and posters have been published and presented over the decades, claiming evidence for Meganthropus. Authors have suggest that Sangiran 5 is evidence of the existence of an older, “more robust morph”, with pongo-like characteristics. Suggesting that a Gigantopithecus-like counterpart lived in island South-East Asia. The most recent appearance of support for Meganthropus was at the 83rd annual meeting of the American Association of Physical Anthropologists in 2014, a team of scientists led by Clement Zanolli presented a poster on their analysis of a fossil mandible fragment code named Arjuna 9. They suggested that teeth had enamel thickness and dental tissue proportions that differed from those seen in H. erectus. The statistical analysis of the enamel-dentine junction also seemed to support an attribution to Pongo sp. The fact remains, no evidence exists to support classifying the Javan fossils as Meganthropus.

The Rise of the Terrible Beasts – Deinotheria

Continental Drift, Palaeoanthropology, Palaeozoology, Paleoanthropology, Volcanology, Zoology

Deinotherium. The Terrible Beast. A Proboscidean. The video below was one of my first introductions to the world of palaeoanthropology and 3D reconstructions of prehistoric life. It inspired me to learn more about the remote prehistory. This creature, a relative of the famed African Elephant, would have been between 4.5 to 5 metres in height at the shoulder, with a set of short downward-facing tusks and would have had a similar behavioural characteristics to modern day elephants. Nobody knows how long the trunk was, though the muscle attachments regions on the front of the skull can give some clues, its length remains conjectural. The set of downward-facing tusks have been the subject of much debate, ranging from sexual display to digging for roots and tubers to tree bark scraping. Again explanations vary. The Deinotheres has, thus far, been broken up into three species – D. giganteum, D. bozasi and D. indicum. The earliest examples of this group have been dated to about 23 million years ago (Early Miocene), while their extinction took place some time in the Middle Pleistocene, about 700,000 years ago. This was probably caused by the knock-on effects of climate change on the habitats in which they lived. The Deinotheres have a history that extends back into the Oligocene Epoch and this will be the subject of this discussion. As a side note, it is really sad that documentaries on human evolution and prehistoric beasts, do not explain the following. This is documentary material, in my opinion.

Deinotherium: A Reconstruction of the “Terrible Beast”

As Gondwana began to rupture apart 184 million years ago in the Early Jurassic. Africa was the first isolated baby continent of Gonwana. It remained as such, quite literally up until about 25 million years ago, 159 million years of isolaton for evolution to work its magic on a limited diversity of placental mammals that called Africa, home. But given that elephant-like creatures existed in Late Oligocene (34 – 28 Million Year ago) Pakistan, land bridges must have developed between Africa and Arabia / Eurasia as the continent made the relentless push north. With such unimaginable tectonic forces at work, it is inevitable that volcanism increases in activity. The tectonic dynamics were such in eastern Africa million of years ago that a unique type of volcanic eruption occurred. Everybody is familiar with the power of water, in the form of slow development floods and the devastating flash-flood. Lava is equally capable of flooding the landscape, not as we all know it today, but on a scale that we cannot comprehend. Everybody is familiar with the Cretaceous – Paleogene Extinction Event, but few are aware of the most devastating mass extinction event in the prehistory of the planet – The Permian – Triassic Extinction Event. It was brought on by a truly massive flood basalt eruption. This is what quite literally created Siberia, that’s right Siberia. Today, 252 million years on, the remains of that basalt eruption covers an area of over 2 million sq km² and may, back then, have covered over 7 million sq km². Eleven flood basalt eruption events have taken place within the last 250 million years. The Eritrean Intertrappean Beds is a much smaller events and featured episodes of volcanic activity followed by laying down of fluvial sediment, hence the “Inter-Trappean”. These beds can be up to 100 metres in depth and cover many square kilometres. This intermittent event has been dated from 29 to 23.6 million years of age.

Our Planet: The Oligocene Epoch (34 to 23 Million Year Ago)

Mendefera, is the town capital of the Debub Region of Eritrea and it sits atop the Eritrean Intertrappean Beds. It was at a number of outcrops of fluvial mudstones and siltstones that fossils of the early ancestors of Deinotherium were uncovered recently, called Prodeinotherium. Numerous other sites have revealed early Proboscideans such as Gomphotherium, which is likely to be the earliest representative of this intriguing family. During the Oligocene, Arabia and north-eastern Africa flirted with the Tethys Ocean promiscuously. So the sight you might have seen from the Eritean highlands, back then was swamp, river and lake populated landscapes, perfect for tropical wet forests, especially when the basaltic volcanism of the area was on hiatus. As Africa edged closer to Arabia and Eurasia, the lack of diverse fauna, may have allowed a large influx of Eurasian fauna to call Africa, home for the first time. There are an estimated six Trans-Tethyan Paleogene mammalian dispersals all of which were limited by the availability of land bridges. So large herbivores could not cross into or out of Africa without substantial land bridge crossing points. By the beginning of the Miocene, there was a massive faunal turnover in the form of African endemic species dying out and the movement of Eurasia fauna south into the continent. This dynamic change in faunal movements also included the northward movement of Prodeinotherium into Eurasia, evolving into the Deinotherium we all know and love.

Mendefera: Site of the ancestral Deinotherium Fossils
Mendefera: Site of the ancestral Deinotherium Fossils

Prehistoric beasts under attack